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PAPER NO. 36 z^/ 

A MATHEMATICAL MODEL FOR THE BEHAVIOR OF THE BRAIN 

WHEN THE HUMAN HEAD IS SUBJECTED TO IMPULSIVE LOADS 

by 

All E. Engin, Ph.D. 
and 

Verne L. Roberts, Ph.D. 
The University of Michigan 

ABSTRACT 

The subject matter of this paper Is concerned with the theoretical deter- 

mination of the behavior of the brain when the human head Is subjected to 

external Impulsive loads.   The mathematical analysis Is made for the axlsymmetric 

response of an inviscid compressible fluid loaded impulsively by Its elastic 

spherical shell container.   The motion of the fluid is assumed to be governed 

by the linear wave equation.   The spherical shell equations include both 

membrane and bending effects in axisymmetric torsionless motion.   In the 

analysis first the solution for an initial value problem is obrained; later 

the transient response of the fluid for an arbitrary velocity input of the shell 

Is constructed by means of convolution integral.    For the numerical results, a 

characteristic time is defined and the excess pressure distribution in the 

fluid Is evaluated for various deceleration times comparable with this 

characteristic time.   A description of some of the salient features of the excess 

pressure distribution Is also given in view of the elastic and rigid shell 

boundary of the fluid.    Since the problem is considered from a theoretical 

point of view to determine some of the causes of the brain damage when the human 

head is subjected to impulsive loads, in the numerical computations the data 

Is chcsen to be suitable to the physical properties of brain and skull. 
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LIST OF SYMBOLS 

E Young's modulus 

P (cos *) Lcgendre polynomials of the first kind 

P*(cos 41) Associated Lcgondre polynomials of the first kind and first order 

V Speed of the fluid-filled shell along an axis passing through the 

poles 

♦ Velocity potential fc*" the fluid 

♦j Nondimensional velocity potential for the fluid, */acs 

0 Nondimensional frequency, oia/c 

a Radius of spherical shell 

a ,a Coefficients of Legendre polynomial expansion of t 

b Coefficients of Legendre polynomial expansion of ^ 

c ,c Coefficients of velocity potential 

c Compressional wave speed in the fluid 

c. Appe.-ent wave speed in the shell, [E/p.O-v2)]1/2 

f Shell-fluid parameter, P0a/psh 

h Shell thickness 

in(z) Spherical Bessel function, (1t/2z)
1/?0(2) 

n n+1/2 

k Wave number, «/c 

p Excess pressure 

pi Nondimensional excess pressure, P/P0C
2 

r,e,+ Spherical coordinates 

r. Nondimensional radius, r/a 

s Speed ratio, c/c 
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1 
t Time 

tc Characteristic time, —• 

tÄ Dficeleration time o 
u Meridional displacement of the shell mid-surface with respect to 

geometric center of the shell 

v Radial displacement of the sh^ll mid-surface with respect to geometric 

center of the iheu 

a2 Thickness parameter, h2/12a2 

( Nondimensioiial radial displacement, w/a 

<i Nondimensional meridional displacement, u/a 

xn n(n+l) 

v Poisson's ratio 

p ,p Mass density of fluid and shell respectively 

T Nondimensional time, c t/a 

T Nondimensional characteristic time, 2/s 

T Nondimensional deceleration time, c t /a 

u Angular frequency 

879 



INTRODUCTION 

This Investigation alms at the following two considerations. First, the 

subject matter Is a point of interest in theoretical mechanics due to the fluid- 

solid Interaction nature of the problem. Second, from the application point of 

view, the impulsive response of the fluid when the enclosing elastic shell is 

suddenly subjected to a change in its velocity can be taken as a simple but im- 

proved theoretical model to determine the formation of brain damage when no local 

contacts are made on the human head. 

The previous studies in the area have been either investigations involving 

shells In contact externally and/or internally with fluids, especially by researchers 

In the field of acoustics, or analyses of various head injury models. While studies 

on these two categories are numerous, only a few representative ones will be men- 

tioned here. Junger1 investigated the effect of fluid on the natural frequencies 

of cylindrical and spherical shells freely suspended in a compressible fluid medium. 

Free and forced oscillations of infinitely long cylindrical shells surrounded by 

water were studied by Greenspon2 who treated unpressurized shells by exact elasticity 

theory and cylindrical shells with fluid by approximate shell theory. Utilizing 

linear shell theory, which includes both membrane and bending effects, Engin and Liu3re- 

cently obtained the frequency equation and corresponding frequency spectrum of 

fluid-filled spherical shells for the axisymmetric and nontorsional motion. 

In the literature, the rigorous mathematical treatments of the physical theory 

of the formation of brain damage was first introduced by Anzelius1» and Güttinger5 

with their analyses of the impulsive response of an inviscid fluid contained in a 

rigid closed spherical shell (or container). Their formulations are essentially 

Identical and Involve an axisymmetric solution of the acoustic wave equation in 
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u 
spherical coordinates. In the papers of both authors the eiyen values of the 

problem are determined by requiring the radial component of the fluid velocity 

to vanish at the interior surface of the rigid spherical shell surrounding the 

fluid. Hayashl6 treated a one-dimensional version of the Anzelius-Glittlnger 

model. His model consists of a rigid and massless vessel containing invlscid 

fluid. The vessel,which is attached to a linear spring, is subjected to impacts 

with a stationary wall. Approximate solutions were obtained rnr the limiting 

cases of sort and very hard Impacts. Although this simple model has the advan- 

tage of being easy to interpret, it has the similar shortcomings of the Anzelius- 

Glittlnger model, i.e. (a) due to rigidity and geometric assumption there is no 

way to determine the possible locations of skull fracture and (b) the effects of 

skull deformation on the intracranial pressure distribution can not be determined. 

Recently, Engin7 removed some major restrictions of previous head injury models 

by obtaining analytical and numerical solutions for the dynamic response of a fluid- 

filled elastic spherical shell. The loading pattern for his modri is taken to be 

local, radial, ax1symmetric and impulsive. Since the load is applied as a force 

locally on one of the poles of the shell, the combined shell theory which includes 

both membrane and bending effects of the shell has been used for the proper de- 

scription of the wave propagation on the shell. The analysis utilizes Laplace 

transform technique in obtaining the transient response of the system. The con- 

clusions of Engin's paper include the possible locations of brain damage and skull 

Injury on the basis of the numerical computationr.. As a problem in mechanics, 

the present Investigation is a generalization of the results of Anzelius and 

Glittinger by removing the restriction of rigidity of the shell surrounding the 

fluid. Our model consists pf an elastic spherical shell filled with inviscid com- 

pressible fluid. The shell material and fluid arc considered to be homogGnoous and 

Isotropie. In the analysis, the fluid-filled shell will be considered to have a 
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constant translatlonal velocity for t<o with respect to an Inertia! coordinate 

system. At teo the shell Is brought to a sudden stop, I.e. the fluid occupying 

the interior space of the shell Is subjected to a global axlsyiraietn'c Impulse 

on Its boundary. The dett-rmlnation of the pressure distribution In the fluid 

for this kind of impulse will help to explain quantitatively the location and 

the magnitude of brain damage under the conditions in which the application of 

local forces on the skull is avoided. 
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h 
I.   EQUATIONS OF MOTION AND THEIR SOLUTIONS 

The governing differential equations of motion for a fluid-filled spherical 

shell were previously obtained In reference 3 by means of Hamilton's Principle. 

These three partial differential equations, which are coupled In terms of the 

meridional and radial displacements» u, w of the shell mid-surface and velocity 

potential, ♦, of the fluid, are given below In nondlmenslonal form: 

o2[0 + cot* $ - <V+C0t2^ " 0 - cot* 0 + (v+cot**) f*]+ 0 + cot* ft 

- (v+cot2*)« + (1+v) |i . 0 « o, (!) 

«2[0 + 2cot* 0 - (1+v+cot^) |i + (cot2<.-v+2)^cot* - 1^- - 2cot« 0 

♦ (1+v+cot2*) 0 - {2-v+cot2*)cot4. IJ-l- (l+v)(|^+ ♦cot*+2c) - 0 

- f |iLll«i^ n 0, (2-) 

and 

where 

u   . _ w V.r.../,   ,oV2 
ac s - ""'s 

i ♦ - J. « - f t - -ft. cs . [t/o^*)]1' , s = I-, r, «J, *. 

|cPoa 

Since the deformation of a given shell Is usually ana'yzed In terms of the de- 

formation of Its mid-surface, Eqs. 1 and 2 describe the motion of an Imaginary 

boundary of the fluid which is half the shell thickness av/ay from the physical 

boundary. These sholl equations Include both membrane and bending effects and 

they are given for an axlsymmctrlc torsionless motion.   Equation 3 is the linear 
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wave equation describing the motion of small oscillations of inviscid and ir- 

rotational fluid. 

Consider the following series expansions for the nondimcnsional radial and 

tangential displacements of the shell midsurface: 

CU.T) - I   an(T) Pn(ccs<1), (4a) 
nso 

and 

♦U.T) "l   bn(T) P;{cos*). (4b) 
nal 

where Pn(coS({.) are Leger.dre polynomials of the first kind and P^(coS(|)) are asso- 

ciated Legendre polynomials of the first order, first kind. Since the second 

solutions of the Legendre equations are singular at the poles they are not in- 

cluded in the expansions of c and if». The requirement of boundedness of solutions 

and the linearity of Eq. 3 lead to its formal solution: 

♦.(r,.*,T) = I   cn(v) jri(kar1) Pn(cos*), (5) 
n=o 

where Jn(kar,) is spherical Bessel function, k-u/c is the wave number and u is 

the circular frequency. 

The boundary condition between the fluid and shell can be stated as the 

continuity of normal velocities for all 4. and t; that is. 

(6) 3T      3r, 

Substitution of Eqs.    4a and   5   into Eq. 6 yields the following relationship 

between an(T) and cn(T) for each n: 

1         da
n(

T) 
Cn(T) B W^{Wf ^  (7) 
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It can be shov/n that substitution of Eqs. 4a, 4b, and Eq. 5, together with Eq. 7 

Into Eqs. 1 and 2, and the repeated utilization of the differential equations 

satisfied by Pn and P^ yields the following system of equations for the deter- 

mination of a (T) and b (T): 

for n^o: 

[ + f ^nTj VT— + 2(1+v) ao(T) c 0' (8) 

for n 2: 1: 

d2bn(T) 
^ + [l+v-a2(l-v-Xn)]an(T)  -  (l-v-Xn)(l+a2)bn{T) = 0, (9) 

[ + fn3^J ^ t(1+v)xn + «2 t^^nO-v)]j bn(T) + }2(Hv) 

•+ o2[x2-Xn(l-v)]j an(T) ■ 0 (10) 

where n^ka^— andx «nCn+l).    In reference 3 a description of some of the salient 

features of the frequency spectrum of a fluid-filled spherical shell is given in 

detail.    There it was also shov/n that for each mode number, n, the infinite num- 

ber of frequencies (or characteristic roots) exists. Thus, the solutions of Eqs. 

8, 9 and 10 can be written in the following form: 

ao^)ej   Aoms1n(flonlST+aom). (11) 
m=o 

and 

^W/nmsin<ßnmST+anm> 02) 

bn(T) C JL ^ A™ Sin(n™ '^ (13) 
m=o 
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where A^,. A^. ^ and onm are arbitrary constants; um and nnm are the roots 

of the following frequency equations respectively 

s2n2 - 2(l+v) « 0   for n«o, (14) 

and 

[  + f gjS] ^ ^n+f^](l-v.Xn)(Ua
2).2(Uv)-a2[x5-Xn(l-v)]js^ 

- (Uv)J2(1-v^n)(1+a2) + Xntl+v-a2(l-v-Xn)]J-a2(2-Xn)[x2-Xn(l-v)] *  0 

for n i 1. (15) 

One of the steps In derivation of Eq. 15 also yields the following expression 
for W 

. _ Uv-a2(l-v-Xn) n»l,2,3,... 
Im    s^+d-v-XjjWl+o2)     m«0,1.2,... 

In view of Eqs. 7, 11 and 12 the nondlmenslonal velocity potential, ♦, now can 

be written as 

*•t,■, •♦•,) "11 *>• s TXT cos('>™> "^ '^"^ (16) 
nBo inso     nv nm' 

Next, let us consider the following physical situation In which a fluid- 

filled shell is travelling with a constant speed, V, along an axis passing through 

the poles. Assume at t=o It Is brought to a sudden stop. Incidentally, this 

situation can be visualized as the motion of the fluid-filled shell In a force 

field which can only affect the shell material; the parameters of the force field 

can be adjusted In such a manner that the desired motion of the shell Is obtained. 

Due to Inertia of the fluid particles, at time t=o they will experience a velocity 

relative to the coordinate system whose origin Is located at the geometric center 

of the shell. In other words, when the shell surrounding the fluid Is brought to 

a sudden stop at tBo, the fluid particles occupying the Interior space of the 
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shell are unaware that the motion of shell Is arrested. Assuming that the Initial 

excess pressure distribution In the fluid Is zero we can now write the following 

Initial conditions on the nondlmensional velocity potential *i 

♦•(r,»*.T-o)s#ft-f-r, cos* 

(17) 

ocs 

and 

T-0 
it       'o w 

From the second Initial condition, I.e. ♦^»o, we get «^»o. The first initial 

condition Is used to obtain the coefficients Anm. In order to do this let us 

first write Eq. 16 In the terminology of elgenfunctlons by defining ^ 

V0nmr'>Pn<C0S*): 

nm 

•     • COs(ftMm ST) 

♦.(r..*.T)-Z    l   sKw^y^  (18) 
n»o m-o •'n^nm' 

Let Gnra
BJn^nnlr,^Pn^C0S*^ be the conjugate-elgenfunctlon for onm; having applied 

the first of the Initial conditions on *i In Eq. 18 and multiplying both sides of 

the resulting equation by F    and Integratih-j It over the fluid volume we get 

V1« Jo W ,'- '" * 
To evaluate the Integral on the numerator of Anm v/e write cos* as P,(cos*) and 

see that In view of orthogonality of Legsndre polynomials In the Interval [-1,1] 

^ #o Sw ^ - iTi2* c^ar«)3Jn^nnlr,JP^C0S*)Pn^C0S*^ s1n*d*dodr' " 0 

for n ^ 1. (20) 

Expressing the spherical Dessel functions In terms of fractional order Bessel 

functions and perfonnlng Inc Integration In Eq. 20 yields 
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; t   e    d   = ^ — TX/T, 0     (n ) (21) J 'o Bnm uv     3   cs u^P-   5/2   w 

where n   = ß(m.   For the evaluation of the Integral on the denominator of Anm we 

use the following properties of Bessel functions and Legendre polynomials: 

0a2[0^knma) - Vj^Vj^a)] I-" 

^0 . 1/m 

and from the definition of the norm of P (cos«(i) 

/* P*(cos4.) sin« d« ■ ^j- 

Thus, the value of the integral under consideration becomes 

texjCO - 0n i(nrm) 0n.3(ft   ll 
,   y     Y      s    -    e    dv _ 2nais    [^TJ^      *jV ro^J>V mn'J 

v n=o m-o ^ nj^ ^ Jn+i{nnm) - On+|(nnm)j 

From Eq. 20 we see that Anm
c0 except n=l.   Let A^A^, using Eq; 21 and.22 in 

Eq. 19 we obtain the final expression for A : 

(22) 

2VJ§^ ^ Jpm) " y*J 
^*'^^^JW\ (23) 

where n   are the roots of the frequency equation for n-l.   Substitution of Eq. 

23 into Eq. 18 after some simplification gives the expression for the nondimen- 

sional velocity potential for the fluid 

05(fiJ Oatojr.) cos(n ST) 
2v        ,0     5   m     5   m ' * m   ' 

♦.(V^x) «^-cos^X njjprn r~JTrn Jfäö )|r.J/7 (24) 

s      m=o   m[ 5 v m'      5V my |v m'j ' 

The nondimcnsional excess pressure, p,, is equal to --p1-and it is obtainable 

directly from Eq. 26. 
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It Is interesting to note that the appropriate limiting case of Eq. 24 agrees 

with the result obtained by Glittinger5. When we write Eq. 24 in dimensional form, 

c., the wave speed on the shell, disappears from the expression of velocity poten- 

tial. In the case in which the shell surrounding the fluid becomes rigid, s-K), 

and Eqs. 14 and 15 degenerate to j'(n)co, which is easily shown to be the frequency 

equation of an ideal fluid contained in a rigid spherical shell. When the shell 

hecomes rigid n^s in Eq. 24 are taken to be the roots of jI(n)so which can also 

be written in terms of fractional order Bessel functions as 2n03,{^)-03(n),so. 

This last equation was used by Glittinger to obtain the necessary natural fre- 

quencies of the fluid for the determination of the impulsive response. 

If desired, the transient response of the fluid for an arbitrary velocity 

input, V(T), of the surrounding shell can be examined by means of Convolution 

Integral. By the principle of superposition, it can be shown that velocity po- 

tential *,, to anarbitrary shell excitation V(T) can be expressed as 

♦.(r.^.r) = -^■♦.(r.^.t) + /T ^-^ Mr, ,^T-Od5. for T>0.        (25) 

where ♦,(r,,^,T) is given in Eq. 24 and V is the constant speed before the sudden 

stop of the spherical shell. 

889 



II. NUMERICAL RFSULTS AND DISCUSSION 

For the determination of the numerical values of the excess pressure, p,, 

generated in the fluid we use a different form of Eq. 24 In which the Bessel 

functions of fractional order arc expressed In terms of trigonometric functions. 

The expression, thus obtained for p, Is 

n /. . ^  2Vc rn A T C3(s1nVcosn|n)-n|ns1nP|n][s1n(nmr.)-n|wr.cos(R|nr.)]s1n(nn)ST) 
P.(r..«.T) —r COL.*J   i^ + (^n )sini!0 + nms1nnmcosnJ  

s    BFO  '  m     in    m  m  m  m 

(26) 

Here the dimensional excess pressure, p, can be obtained from p'p,p  c.2. At 

r.^o the equation for p, Is Indeterminate; hov/cvor, application of L'Hospital 

rule to Eq. 26 once yields P1(O,^,T)=O. That is, in the equltorlal plane v/hich 

is perpendicular to the direction of impulse, pressure is zero at all times. 

Since the problem-was considered to serve as a theoretical model to determine 

the formation of brain damage, the numerical values arc obtained from the fol- 

lowing data suitable to the physical properties of brain and skull: 

Ps - 0.0772 lbm/1n
3 

E «= 2 x 106 lbf/in2 

v - 0.25 

a •= 3 in (27) 

h ■ 0.15 In 

Po « 0.0362 lbm/in
3 

c ■ 57100 in/scc. 

The assun.ption?leading to the above data are discussed In detail in references 

7 and 8. 
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Since the sudden stop of a fluid-filled shell demands an Infinite deceler- 

ation, It Is more reasonable to consider the case where stopping occurs during 

a finite time t0 (Wondlmenslonal value, 'o"-^)- More specifically let us as- 

sume that the shell has the following velocity form 

r v     (t<o) 

V(t) -   I Vt/t0 (o<t<t0) (28) 

I o    (tU0) , 

i.e. It Is brought to a stop with a constant deceleration during time t0.    For 

the numerical results the macmitude of V 1s taken to be 528 In/sec.   As 

regartbthe response of the system, the above situation Is Identical to that 

In which the shell and Its content are set Into motion from rest with the same 

magnitude of acceleration.   Thus, In view of Eq. 25 the expression for the 

excess pressure can be obtained directly from. Eq. 26 

P.Cr.^.-r)-   I   ^(♦.r1){[u(T)-u(t-t0)]»1n«-^ 

♦ u(T-t0) sin 3J-2. slnn^t-^j 

where 

so •   mk m *      in mm      m      mJ 

(29) 

and U(T), u(fT0) are the unit step functions. We note that the limiting case of 

better convergence th.m the ons given In Eq. 26. 

Eq. 29 In fact ylves Eq. 26 when T0'>O .   The series In Eq. 29 exhibits much 
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Let us define a characteristic time, tf.(or T, ■ ~ , 3.615 for the data 

given In Eq. 27) to be the time required for a wave In the fluid to travel from 

one pole to the other. In all the figures the deceleration duration Is considered 

with respect to this characteristic time. Figure 1 shows the plot of the excess 

pressure at the pole UBo) for two different values of deceleration duration. The 

reduction of the pressure with doubling cf the deceleration time Is reodily apparent. 

Figures 2 through 8 present the »yxess pressure distribution along the polar axis 

for various values of nondlmenslonal radius r, and nondlmcnslonal time t. From 

Eq. 29 we see that p.C-r,,^,!) " -p^r^.t); hence, the points located symmetri- 

cally with respect to the equltonal pUne which Is perpendicular to the polar 

axis always experience the excess pressure of opposite sign. That Is, for such 

a pair of points If one Is In a state of compression, the other one will be In 

a state of dilatation. From Figs. 2 through 8 one can find the magnitude of the 

excess pressure along any ray extending from the origin by simply multiplying the 

value with cos^. In other words, the waves generated on the inner surface of the 

shell have amplitude factors whicli attenuate according to the polar angle $. When 

the deceleration time I«T , sharp extremes in the excess pressure form for T>T0. 

This fact Is Illustrated in Fig. 2. A further Interesting observation Is the 

comparison of the pressure distributions in the fluid contained in the rigid and 

the elastic shells. In Figs. 3 through 8 pressure distributions are plotted for 

both elastic and rigid cases. From these plots we see that the amplitude of the 

excess pressure wave in the fluid contained in an elastic shell is considerably 

less than that of the excess pressure wave in the fluid contained in a rigid shell. 

Local variations of the wave form in the clastic case are also noticeable. When 

we compare Figs. 5 and 7 and Figs. 6 and 8 we notice that the wave forms are 
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essentially the same Mid the amplitudes of pressure for the large value of T0 

i  I 
are much less than those corresponding to a small value of T (compare tho scales 

in the figures). In Figs. 7 and 8 T »lOOx. corresponds to 502 In/sec2 (or 130 g's 

for a deceleration time of 0.0105 sec.) In this case the maximum negative excess 

pressure generated In the fluid Is about 48 psl. 

In conclusion. If we seek the brain damage to occur at the points of rare- 

faction of the fluid, we find this situation arises In maxlmuir magnitudes at the 

poles and these locations are quite significant for the analytical confirmation 

of the cavltatlon theory of brain damage. 
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Fig. S    Nondlnenslonal excess pressure, p,, vs. nondlnenslonal time, T, trid 

nondlmensional radius, r,; ♦"© and t0-2Tc, (Rigid shell boundary). 
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nondlmensional radius, r,j ♦«o and TO»100TC, (Rigid shell boundary). 
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